
Broadcasting in Contiki-OS

Shantanoo Desai
prepared for:

Prof. Dr. Anna Förster

Sustainable Communication Networks
University of Bremen

November 20, 2015

1



Outline
Rime Stack

Rime Stack Libraries in Contiki
Broadcast Example

Broadcast Results
Code Understanding
Broadcast in Cooja

2



Contents of this section

Rime Stack
Rime Stack Libraries in Contiki
Broadcast Example

3



Rime Stack

• “Just send data don’t worry whether corrupted or lost!"
• Broadcast: Send the same message to everyone

Contiki-OS uses Rime-stack which is:
• Lightweight, layered communication stack for Sensor

networks
Why RIME? – traditional communication stack TOO Stringent to
apply on sensor node

4



Rime stack in Contiki

• Main source files for Rime stack found in :
contiki-2.7/core/net/rime

• Predefined examples found in :
contiki-2.7/examples/rime

Inside the /rime folder, available examples :
• broadcast (both: .c and .csc(Cooja Simulator))
• unicast
• collect
• mesh
• multihop

[HINT: use the ‘ls’ command in the folder]

5



UDP Broadcast Example

Assuming you in the contiki-2.7/example/rime folder do the
following:

1. open the example-broadcast.c file using gedit

/examples/rime/ gedit example-broadcast.c

2. find packetbuf_copyfrom() function in
PROCESS_THREAD section

3. replace “Hello” to your name and change the subsequent
number to the Length of your name + 1(for the null
character)
e.g. packetbuf_copyfrom(“John", 5)

4. Save the file and compile
make TARGET=sky savetarget

6



Broadcast on Tmote Sky

NOTE: When connecting two or more motes to the Virtual
Machine:

1. Check the connection of motes by clicking on Virtual
Machine tab on VMware player & check Removable
devices section and make sure all the motes are
connected by clicking on Connect(disconnect from host)

2. In terminal to show which motes are connected on which
USB ports:
make motelist

7



Checking Multiple Connected Sky Motes

8



UDP Broadcast on Tmote Sky

For programming individual motes separately use:

make TARGET=sky savetarget
make example-broadcast.upload MOTE=1

MOTE=1 will program the Sky mote at /dev/ttyUSB0 without
programming the Sky mote at dev/ttyUSB1
– Try for the mote connected at dev/ttyUSB1 [HINT: MOTE=2]
To Observe Output:

make login MOTE=1
make login MOTE=2 (in a separate NEW Terminal)

9



Contents of this section

Broadcast Results

10



Broadcast Output

Observe the Broadcast Message “John" sent by both the motes
and received to each other with different addresses.

11



Contents of this section

Code Understanding

12



Understanding the Code

Headers:

#include "contiki.h" /* For contiki apps */
#include "net/rime.h" /* For RIME stack */
#include <stdio.h> /* For printf()*/

Process Macro: for making application specific macros in
contiki

1. name a PROCESS
2. AUTOSTART the Process

PROCESS(broadcast_process,"Broadcast example");
AUTOSTART_PROCESSES(&example_broadcast_process);

13



Understanding the code

For complete operations of functions refer to
core/net/rime/broadcast.c and core/net/rime/broadcast.h
Observe the broadcast_recv() function:

broadcast_recv(struct broadcast_conn*,
const rimeaddr_t*);

Function: parses an incoming packet and displays the message
and the address of the sender.

• struct broadcast_conn * : This structure which has 2
structures : abc_conn, broadcast_callbacks *. The
abc_conn is basic type of connection over which the
broadcast connection is developed. And, the
broadcast_callbacks point to recv and sent functions (in
this example, just recv)

• rimeaddr_t *: This is a union which has a character array
u8[RIMEADDR_SIZE].

14



Understanding the code

broadcast connections

broadcast_close(struct broadcast_conn *)
broadcast_open(struct broadcast_conn *, uint16_t ,
const struct broadcast_callbacks *)

• broadcast_close(struct broadcast_conn *): for closing a
previously open best-effort connection for broadcasting
messages

• broadcast_open(struct broadcast_conn *, uint16_t ,const
struct broadcast_callbacks *): to open a best effort
broadcasting UDP port

• broadcast_conn : A pointer to a struct broadcast_conn
• uint16_t: The channel on which the connection will operate
• broadcast_callbacks : A struct broadcast_callbacks with

function pointers to functions that will be called when a
packet has been received

15



TIMERS in contiki Applications

etimer_set(struct etimer *, clock_time_t)

Function: set an event timer for a time sometime in the future.
When the event timer expires, the event
PROCESS_EVENT_TIMER will be posted to the process that
called the etimer_set() function

16



Contents of this section

Broadcast in Cooja

17



Cooja Simulation of UDP Broadcast

• open the example-broadcast.csc in Cooja simulator
• In Cooja Simulator go to File – Open Simulation – Browse
• Navigate to examples/rime – select

example-broadcast.csc

Simulation Environment has 10 motes in the Network panel
For traffic visibility click on View in Network Panel and check on
for Radio Traffic and Click on Start

18



UDP broadcast Simulation

19



References

for Rime Stack:
http://dunkels.com/adam/dunkels07rime.pdf
For Timers in Contiki-OS: https:
//github.com/contiki-os/contiki/wiki/Timers

20

http://dunkels.com/adam/dunkels07rime.pdf
https://github.com/contiki-os/contiki/wiki/Timers
https://github.com/contiki-os/contiki/wiki/Timers

	Rime Stack
	Rime Stack Libraries in Contiki
	Broadcast Example

	Broadcast Results
	Code Understanding
	Broadcast in Cooja

